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Abstract— Studying the dynamic evolution of time-varying volumetric data is essential in countless scientific endeavors. The ability
to isolate and track features of interest allows domain scientists to better manage large complex datasets both in terms of visual
understanding and computational efficiency. This work presents a new trajectory-based feature tracking technique for use in joint
particle/volume datasets. While traditional feature tracking approaches generally require a high temporal resolution, this method
utilizes the indexed trajectories of corresponding Lagrangian particle data to efficiently track features over large jumps in time. Such a
technique is especially useful for situations where the volume data is either temporally sparse or too large to efficiently track a feature
through all intermediate timesteps. In addition, this paper presents a few other applications of this approach, such as the ability to
efficiently track the internal properties of volumetric features using variables from the particle data. We demonstrate the effectiveness
of this technique using real world combustion and atmospheric datasets and compare it to existing tracking methods to justify its
advantages and accuracy.

Index Terms—Feature extraction and tracking, particle data, volume data, particle trajectories, flow visualization

1 INTRODUCTION

Joint particle and volume data has become increasingly popular, espe-
cially in the scientific community. Researchers in numerous fields,
such as combustion science [25], plasma physics [23], and atmo-
spheric science [11], deploy large scale simulations to model specific
physical processes and obtain a deeper understanding of their area of
study. These simulations record results simultaneously in two very
different ways: as field data on a spatial grid (volume data) and as
discrete particles which are able to move spatially (particle data).

The field data, in the form of either vector or scalar fields, repre-
sents the Eulerian specification of the system and records information
at fixed spatial locations throughout the domain. On the other hand,
the particle data represents the Lagrangian specification of the system
and records information as advected tracer particles. In many cases,
the field data is analyzed to extract volumetric features of interest, and
the particle data is assembled into a set of time series curves or trajec-
tories. However, the fact that these two data types have such inherently
different representations makes it difficult to utilize both forms simul-
taneously in many analysis techniques.

One such technique, feature extraction and tracking, has become
a fundamental necessity for today’s scientists. The growing size and
complexity of simulations are making it increasingly difficult for sci-
entists to study the full extent of their datasets. Extracting subsets
of the data in the form of features allows scientists to easily isolate
and study portions of interest without becoming overwhelmed by the
sheer size of the dataset. In time-varying data, feature tracking can de-
termine a correspondence between the same feature at different points
in time. Not only is it important to be able to extract the same subset
of information (feature) over the entire temporal domain, but studying
how this subset changes over time can also have a number of interest-
ing implications to domain scientists.

Traditionally, feature tracking techniques use only Eulerian specifi-
cations of the data (see Section 2). However, in this work, we present
a new feature tracking method which utilizes data from both the Eule-
rian and Lagrangian specifications. It is based on a set of techniques
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which can determine a correspondence between volume and particle
data, and perform joint-analyses involving both data types. We uti-
lize these methods to determine sets of particles that correspond to our
features of interest. We then use the trajectories of these particles to
relocate these same volumetric features and/or track their evolution in
multiple subsequent timesteps.

There are many advantages to this approach. First, this method
works well even when there is a very low temporal resolution in the
field data. Since particles are easily distinguishable from one another
through some indexing or naming scheme, we can identify our fea-
tures of interest over very large time intervals without having to access
(potentially missing) intermediate data. In other words, we can sim-
ply jump to any future timestep in our particle data and re-extract our
volumetric feature. This is also useful when working with extremely
large datasets which make it computationally difficult to efficiently
track a feature though all intermediate timesteps. The ability to skip
numerous timesteps in the feature tracking process can lead to large
speedups. We also address the issue of uncertainty in the predictions
made by this approach since the accuracy of extracted features is likely
to decrease over extremely large jumps in time.

In addition, we can use this scheme to study more than just feature
movement. In many cases, particle data records a number of variables
other than spatial location. Through this correspondence between vol-
umetric features and particles, we can more efficiently track internal
changes of the feature based on variables found in the particle data.
This is because it is much easier to measure data fluctuations by fol-
lowing a set of corresponding particles rather than extracting a volu-
metric feature at every point in time.

In this paper we present our new trajectory-based feature tracking
technique and make the following contributions:

• We introduce a new feature tracking method that tracks volumet-
ric features using corresponding particle trajectory data.

• We develop uncertainty metrics to quantify the discrepancy be-
tween the particle and volume data to reduce errors over large
jumps in time.

• We extend this method to efficiently track other non-spatial time-
varying properties of a feature of interest using variables in the
particle data.

We demonstrate the effectiveness of our approach using real-world
combustion and atmospheric datasets, and justify its advantages and
accuracy by comparing it to existing methods.



2 RELATED WORK

Some work has been done on combining volume and particle data for
analytical purposes. Sauer et al. [17] developed a scalable framework
for joint-analyses on large scale particle and volume datasets. While
the correspondence between the data types is useful, it lacks a more
general description to include analyses on time-varying data. Crossno
and Angel [4] utilized particle data for the extraction of isosurfaces
in volume datasets. In addition, Krueger [8] utilized sets of virtual
particles to interact with and extract extra information from volumetric
scalar fields and applied it towards volume rendering techniques.

There has been an extensive amount of work done on feature track-
ing techniques. While originally designed for computer vision, feature
tracking techniques were first applied towards 3D volume data analy-
sis by Samtaney et al. [16], who determined a correspondence across
timesteps by comparing features with nearby centroids. Reinders et
al. [15] conducted a similar procedure by comparing properties like
the mass and size of the features.

A different approach was taken by Silver and Wang [18, 19] who or-
ganized features into tree-like structures and then identified connected
components. This method works by assuming that a feature will over-
lap itself over two consecutive timesteps. In addition, Ji et al. [7]
introduced a way of tracking features using isosurfaces in a higher
dimensional geometry. Tzeng and Ma [22] use a machine learning
approach capable of learning information from transfer functions to
aid in tracking features. Ozer et al. [13] extend tracking to follow
groups of features rather than individual ones as it is more cost effec-
tive in large datasets. Takle et al. [20] also track groups of cosmolog-
ical features made up of groups of dark matter particle clouds. Con-
trary to many previous approaches, which involve extracting features
in separate timesteps and then identifying a correspondence, Muelder
and Ma [12] developed a method which uses a prediction-correction
method. A feature from the previous timestep is used as a prediction
and is then refined by region growing and refinement. However, all of
these methods still require a high temporal resolution in the data, and
in many cases, a spatial overlap between features across consecutive
timesteps.

Other recent approaches try to address feature tracking in a number
of ways. Caban et al. [1] as well as Glatter et al. [5] used a texture-
based tracking approach which looks for similarities between textu-
ral characteristics to track patterns in time-varying data. This method
works well with tracking noisy volumetric features; however, may not
work as well when tracking features resembling solid shapes. Theisel
and Seidel [21] developed an approach that constructs streamlines to
track critical points in vector fields, and as a result, can track features
like saddles or vortices. While effective, this method lacks a more gen-
eral feature tracking description that can track features in scalar fields.
In addition Lee and Shen [10] as well as Gu and Wang [6] utilize Time
Activity Curves (TAC) in order to quantify the similarity between the
time series of voxels and features for tracking purposes.

There has also been work done by Chen et al. [2] in developing
feature extraction and tracking methods in distributed environments,
where features can span multiple refinement levels and processors.
Also, Wang et al. [24] have developed a scalable parallel extraction
and tracking method for use with large scale datasets. Other feature
tracking approaches can be found in the survey by Post et al. [14].

3 APPROACH

As previously described, our approach utilizes both particle and vol-
ume data to track features. While feature identification/extraction is
done in the volume space, the tracking is done in the particle space.
This is extremely advantageous because particle tracking is known
to be easy, fast, and efficient. The challenge with this approach lies
in determining a correct correspondence between these two domain
spaces. Our feature tracking method consists of the following general
steps: 1) Identify/extract feature of interest; 2) Determine correspond-
ing particles; 3) Trace particles along their trajectory; 4) Re-extract
feature based on new particle locations. These steps in are illustrated
in Figure 1 in their respective domain spaces.

Fig. 1. Trajectory-based feature tracking workflow with each step shown
in its respective data space.

Fig. 2. Feature-based particle query (left): Particles are mapped to voxel
space and kept only if that voxel is part of a feature. Particle-based vol-
ume feature query (right): Particles are mapped to voxel space signi-
fying that a voxel is part of a region. Region growing then fills in any
potential gaps.

3.1 Particle/Volume Data Correspondence

We derive two main tasks to determine a correspondence between par-
ticle and volume data. The first is feature-based particle query, which
allows us to extract a subset of particles corresponding to a volumetric
feature. We define the shape of a feature using a 3D bitmask repre-
senting voxels in the volume domain. A value of 1 in the bitmask
represents a voxel that is part of our feature of interest, while a value
of 0 represents a voxel that is not part of our feature. When it is time to
query particles, each particle is mapped to a voxel in the volume data
space based on its location and is checked against the bitmask. If the
corresponding voxel is part of our region, the particle is kept, other-
wise it is discarded. As a result, only a single pass over all particles is
required. This allows us to efficiently extract particles within irregular
spatial regions as defined by our features of interest.

The second task, particle-based volume feature query, represents
the opposite task of extracting volumetric features based on a subset
of the particle data. Once again, each particle is mapped to a voxel in
the volume data space based on its location. If one or more particles
correspond to a voxel, we set a value of 1 in the bitmask, and set a
value of 0 elsewhere. This new bitmask is meant to represent a new
volumetric feature. However, gaps may occur in a feature where no
particles were found. We therefore use region growing techniques to
complete the feature.

We perform seeded region growing in a breadth-first manner in that
a queue is maintained for searching and classifying voxels as part of
our feature. The queue is first initialized using a seed point(s). For



Fig. 3. A visual representation of the different types of feature interac-
tions across three points in time.

each voxel in the queue we check the data value of its neighbors. If
its value is within a user defined threshold, it is marked as part of our
feature and its neighbors that have not been visited are added to the
queue. This process is repeated until the queue is empty. To fill in gaps
caused by particle-based volume feature query we simply initialize the
queue with voxels that correspond to a value of 1 in our bitmask as
seed points. Figure 2 shows a visual representation of feature-based
particle query and particle-based volume feature query.

3.2 Trajectory-based Feature Tracking
Traditionally, feature evolution is characterized into a number of inter-
actions: continuation, bifurcation, amalgamation, creation, and dissi-
pation. Continuation occurs when the same feature exists across mul-
tiple timesteps. The feature may change location or shape across this
interval but remains as one connected component. Bifurcation (split-
ting) occurs when a feature separates into two or more sub-features,
and amalgamation (merging) occurs when two or more features com-
bine. Lastly, creation and dissipation occur when features appear and
disappear between timesteps. These interactions can be seen in Fig-
ure 3. In the following subsections, we describe how trajectory-based
feature tracking can be used to successfully handle each of these cases.

3.2.1 Feature Continuation
We begin describing trajectory-based feature tracking by example us-
ing the simplest case, feature continuation. This allows us to make the
assumption that a feature not only exists between two (not necessarily
consecutive) timesteps, but also remains as one single connected com-
ponent. We first identify a feature of interest in the volume data space
at an initial timestep ti. In our implementation, users select features
by placing seed points which are used as input to a breadth-first region
growing algorithm. Neighboring voxels with values within a certain
user defined threshold are then added to the region. Our extracted fea-
ture of interest is then defined using a 3D bitmask as described earlier.

Next, we utilize feature-based particle query to extract a unique sub-
set of particle positions pk at our original timestep ti from the set of all
particles P:

pk(ti) = xk(ti),yk(ti),zk(ti), (1)

where pk ∈ P. Because each voxel in the volume data space repre-
sents a volumetric region, we can map each particle position to a corre-
sponding voxel and then check against the bitmask to determine which
particles to extract. Note that this mapping may not be one-to-one as
a single voxel could correspond to multiple (or zero) particles. Our
extracted subset of particles will then be used to track our feature and
relocate it at different timesteps.

We can now immediately identify the evolution (changes in posi-
tion, shape, etc.) of the feature by relocating it at a later timestep ti+n.

Such an operation may be necessary because the volume data may
be temporally sparse with all intermediate n− 1 timesteps unavail-
able. Another possibility is that the data may be too large and users
do not have the computational resources to efficiently track the feature
through all intermediate timesteps. Since the particle (trajectory) data
is indexed, we can quickly identify the new particle positions pk(ti+n)
without accessing any (possibly unavailable) intermediate data.

With our new particle locations, the last step is to reconstruct the
feature using the volume data at time ti+n through particle-based vol-
ume feature query. We map each particle location pk(ti+n) back to a
corresponding voxel to be designated as a seed point for region grow-
ing. Any seed points whose data values lie outside of the original
threshold used to extract the region at timestep ti are discarded, be-
cause these points represent particles that have fallen outside our re-
gion of interest. We also include the option of adding a difference
value (±δ ) to the original threshold. This user defined value is meant
to accommodate expected variations in the internal properties of the
feature. For example, if we extract a feature based on a specific range
of hydroxide concentrations and expect this value to decrease over
time in our feature of interest, we can be more lenient about includ-
ing voxels whose values may be below our original threshold. The
remaining seed points are then used in breadth-first region growing as
described earlier to fill in any gaps and re-extract the rest of the fea-
ture. A visual representation of this procedure can be seen below in
Figure 4.

Note that this technique also works in reverse, as we can jump to an
earlier timestep ti−n in the particle data space and then re-locate our
feature of interest. This forwards/backwards duality becomes even
more important when tracking the other types of feature evolution.
However, one challenge of this technique is quantifying and ensuring
the accuracy of re-grown features as we need to account for any po-
tential errors or mismatches between the two data spaces, especially
over extremely large jumps in time. This is discussed in detail in Sec-
tion 3.3.

3.2.2 Feature Splitting and Merging

To track splitting and merging in feature evolution, we first observe
that these two interactions become identical simply by reversing the
direction of time. By traveling backwards in time, a split becomes
a merge and vice versa. Therefore, if we are able to identify when
splitting occurs, we can use a similar technique when tracking features
backwards to identify that a merge has occurred.

To identify a split, we begin by tracking a feature using the same
method as the one used for feature continuation. We first identify a
feature of interest at timestep ti, extract corresponding particles, trace
them forward in time, and re-extract our feature. The difference is
that we end up with two or more separate sub-features after the last
region growing phase. We can identify whether our newly extracted
feature(s) at timestep ti+n are connected using a standard connected
components algorithm [24] on a graph where voxels represent nodes
with edges connecting neighboring voxels. If we end up with more
than one connected component, then with some likelihood (see Sec-
tion 3.3), a split must have occurred somewhere between timesteps ti
and ti+n. This can be seen in Figure 5.

Since users are generally interested in tracking features forward in
time, we need an alternate method to determine whether a merge has
occurred within our time interval. After re-extracting our feature from
the particle locations pk(ti+n) and using region growing to fill in the
gaps, we perform an additional feature-based particle query to extract
another subset of particle positions qm(ti+n) from the set of all par-
ticles P. This excludes the original set p of particles used to track
the feature (p∩q = 0, where pk,qm ∈ P). This set represents any ad-
ditional particles that may have entered our feature within the time
interval.

Next, we trace the new particle set backwards to our original
timestep ti and identify the original locations of particles qm(ti).
Through another final particle-based volume feature query and con-
nected components check, we can extract an additional feature(s) at
timestep ti and conclude with some likelihood (see Section 3.3) that



Fig. 4. Steps involved in trajectory-based feature tracking for a feature exhibiting continuation.

Fig. 5. Identifying a split in feature evolution: 1) Identify feature and
extract particles. 2) Trace particles forward and re-extract feature. Then
check connectivity to identify and isolate a new set of sub-features.

these features merged between timesteps ti and ti+n. This can be seen
in Figure 6. We can use the combination of these methods to track
cases where both splits and merges occur over our time interval. For
example, a feature can split onto one or more sub-features, and one
of these sub-features may have undergone a merge. This is achieved
by performing a connectivity check as well as a check for additional
particles after every feature re-extraction (i.e., particle-based volume
feature query).

3.2.3 Feature Creation and Dissipation
In the same way that splitting and merging can be considered the same
type of evolution by reversing the direction of time, so can creation and
dissipation. Dissipation occurs when the voxels that make up a feature
of interest no longer fall within the threshold requirements that define
the feature. In our trajectory-based feature tracking approach, we say
that a feature has dissipated if we discard all seed points during the
feature re-extraction phase. In other words, if particle-based volume
feature query results in no available seed points for growing because
all corresponding voxel values lie outside of the threshold, then we can
say with high likelihood that our feature has dissipated. To identify
feature creation, we reverse the direction of time and trace our particle
positions to an earlier timestep. If we discard all seed points during
the feature re-extraction phase, then we conclude that our feature of
interest underwent creation during our time interval.

3.3 Uncertainty Metrics
In this section we discuss uncertainty metrics that can be used to gauge
the accuracy of predictions made by trajectory-based feature tracking.
While the aforementioned techniques tend be very accurate for reason-
able jumps in time, jumping too many timesteps can lead to a build-up
in discrepancies between the particle and volume data correspondence
(see Section 4.3), and as a result, inaccuracies in feature evolution
predictions. There are a number of potential causes for these discrep-
ancies. The first major cause is due to the fact that parts of features
(voxels) can pop in and out of existence based on whether its value

Fig. 6. Identifying a merge in feature evolution: 1) Identify feature and
extract particles (pk). 2) Trace particles forward and re-extract feature.
3) Identify any additional particles (qm) found in the feature. 4) Trace the
new set of particles (qm) backwards and re-extract feature.

meets threshold standards, whereas particles often cannot. For exam-
ple, if parts of our original feature dissipate during our time interval,
the particles will continue to evolve and may enter nearby features.
This can trigger a false positive, because it can result in the identifi-
cation of a split, even if the two features have not interacted with one
another. Another potential cause is that simulation particles are often
massless, whereas our features (e.g. an ash cloud) may not be, result-
ing in differences in their physical movement. Lastly, computational
interpolation errors and inaccuracies in lower order advection schemes
can also increase this discrepancy.

The goal of our uncertainty metrics is to quantify the discrepancies
between the particle and volume data in an attempt to reduce errors
that may arise over large jumps in time. It is based on a few main
assumptions: the prediction made by the majority of the particles is
most likely the correct one, and if particles truly evolve with the fea-
tures, then the number of particles that fall outside the feature during
re-extraction should be small. However, with the case of dissipation
(or features that simply decrease in size), we have to expect that a
certain number of particles may leave the feature.

We can measure the volume V of features in number of voxels and
can compute it by summing up all the values in our bitmask,

V = ∑bitmask( j), (2)

where the index j spans our 3D domain. In addition, we can deter-
mine the number of particles originally extracted from our feature at
timestep ti by measuring the size of set p. We define the subset of
particles that fall outside our feature at timestep ti+n (i.e., the parti-
cles which result in discarded seed points) as p′, where p′ ⊂ p. We
then estimate the discrepancy D between the particle and volume data
by checking how much the fraction of discarded particles exceeds the
amount of reduction in feature volume.

D = max(
|p′|
|p|
−max(1− Vi+n

Vi
,0),0) (3)



Fig. 7. A depiction of the FC/U (shown in blue) and FS/S (shown in
green) flow classifications.

This results in a discrepancy value that lies between 0 and 1 with
higher values only occurring when both |p′| and Vi+n are large (relative
to |p| and Vi respectively). By taking the change in size of the feature
into consideration, we can handle the case of dissipation (Vi+n = 0),
where we expect all particles to be discarded (|p′| = |p|), as well as
features that simply reduce in size.

Because we use the particle positions as seed points into region
growing, only one particle must remain inside our feature in order to
re-extract it in its entirety. Moreover, in the case where splitting oc-
curs, we only require one particle (seed point) per sub-feature. There-
fore, even if the discrepancy between the two data types is high, we
can fully re-extract our feature with high likelihood. The errors that
can arise however, lie in the form of false positives. In other words,
when the discrepancy is high, there is a greater chance that a particle
wanders into a nearby feature, falsely extracts it, and identifies it as
something that has split off of our original feature.

We utilize the discrepancy measure in an attempt to mitigate the
possibility of false positives. If a split is identified, we assume that the
sub-feature that contains the majority of the particles (the main sub-
feature) is correct and evaluate the possibility that other sub-features
may be false positives. We compute the ratio of the number of particles
in each sub-feature to the number of particles in the main sub-feature,
and then compare this value to the calculated discrepancy. If this ratio
is smaller than the discrepancy we ignore this sub-feature in our final
extraction. For example, if the computed discrepancy is 0.33, then we
require that each sub-feature has at least 1/3 of the number of particles
that the main sub-feature has, otherwise it is discarded. This allows
us to potentially ignore extracted sub-features generated from small
groups of stray particles. Note that this comparison can be tweaked to
form a stricter or more lenient extraction criteria.

4 RESULTS

We demonstrate the effectiveness of this feature tracking technique
using two real world datasets. The first is a large-scale combustion
dataset that comes from S3D, a massively parallel simulation code de-
veloped by scientists at Sandia National Labs [25]. This simulation
records information as both particle and volume data simultaneously.
The second is an atmospheric dataset that comes from two sources.
The ”volume data”, in this case 2D satellite detections, comes from the
Atmospheric Infrared Sounder developed by NASA’s Jet Propulsion
Laboratory [9]. The particle trajectory data representing atmospheric
flow comes from Chemical Lagrangian Model of the Stratosphere, a
simulation developed by Research Center Jülich [11].

4.1 Combustion Dataset
The combustion dataset represents a 3D lifted ethylene jet flame. Its
highly-connected turbulent nature makes feature tracking difficult be-
cause inter-feature evolution events (e.g. splitting and merging) are

Fig. 8. A subset of the corresponding particle data colored according to
temperature. Red indicates hotter portions of the jet while blue indicates
colder portions.

Fig. 9. An extracted volumetric feature of interest. A zoomed-in view (A)
as well as the corresponding extracted particles (B) are shown.

more likely to occur. This particular dataset has sufficient spatial and
temporal resolution to compare the results of our trajectory-based fea-
ture tracking approach with traditional approaches. The volume data
represents a series of 27 different flow classifications determined by
computing a local rate-of-deformation tensor from the underlying vec-
tor field [3]. A depiction of the two most prominent classifications,
FC/U (focusing compressing unstable) and FS/S (focusing stretching
stable) can be seen in Figure 7. Scientists are especially interested
in these features as they are presumed to have a strong influence on
flamelet deformation. The particle data consists of massless particles
which, in addition to spatial location, records other parameters such as
temperature and the mass fractions of molecules that make up the jet.
A representative subset of the particle data can be seen in Figure 8.
The volume data in this case is sparser than the particle data with one
timestep of volume data for every five timesteps of particle data.

Since the features we aim to track are highly connected, simply
growing based on connectivity will result in a large single feature that
spans the entire domain. Instead, we use a modified version of region
growing to ”pinch off” weakly connected portions. This is done by
measuring the connectivity strength of voxels by counting the num-
ber of similar neighbors. Voxels are then only added to the region if
their connectivity strength exceeds a threshold. This modified region
growing is used both for the initial feature extraction and re-extraction
phases in this particular dataset. An example of an extracted feature of
interest as well as the corresponding particles can be seen in Figure 9.

We demonstrate the ability of this technique to track different types
of feature evolution in Figure 10. Features and corresponding particles
were initially extracted at time t = 25. Features were then re-extracted
at time t = 50, 75, and 100 by jumping 25, 50, and 75 timesteps from
the initial extraction timestep respectively. Feature A shows an exam-
ple of splitting and merging as it splits into two sub-features between t
= 50 and 75 which merge back together between t = 75 and 100. Fea-
ture B shows an example of creation and splitting. This feature was
created between t = 0 and 25 since tracing the particles backwards to t
= 0 results in no available seed points for growing. The splitting then
occurs between t = 75 and 100. This coarse method of re-extracting



Fig. 10. Tracking a feature that exhibits splitting and merging (A) and a feature that exhibits creation and splitting (B).

Fig. 11. A graph showing the average temperature of the two features
depicted in Figure 10.

the feature at incremental timesteps is a useful way for users to quickly
examine the general evolution of a feature. Users can then examine
the evolution in more detail by inspecting the intermediate timesteps
(if available).

We also demonstrate the ability of using the particle data to track
the internal properties of a feature. In this case we examine the aver-
age temperature of a feature of interest by averaging the temperature
values of all corresponding particles. We discard any particles that
fall outside the feature when computing the average. The results can
be seen in Figure 17, which displays the average temperature for the
two features shown in Figure 10. From the graph we can see that the
temperature of Feature A remains relatively constant, while the tem-
perature of Feature B steadily increases. This indicates that Feature
B is entering a portion of the jet where burning is occurring, whereas
Feature A is not.

In addition, we compare this method to an existing feature track-
ing approach to justify its accuracy. In other words, we show that
the predictions made by our trajectory-based approach extract features
similar to those generated by approaches that track features through
all intermediate timesteps. In this comparison, we implement a fea-
ture tracking approach similar to the one discussed in [12]. This is
a predictor-corrector method which uses region growing and refine-
ment to track features that physically overlap between consecutive
timesteps. The identified feature from a previous timestep is used as
a prediction. It is then corrected using region growing and refinement
to identify the feature in the current timestep. We choose this method

Fig. 12. A comparison between the resulting features extracted us-
ing the trajectory-based approach and the predictor-corrector approach.
Only subtle differences (approximately 1% of the feature) can be seen
at the location of the red arrow.

as a comparison as it is one of the more efficient available options for
feature tracking.

Figure 12 shows a comparison between the resulting features that
are extracted using the trajectory-based method and the predictor-
corrector method. In this example, the trajectory-based method ex-
tracts particles at t=0 and then jumps directly to t = 150, while the
predictor-corrector method steps through all available intermediate
timesteps. The figure shows that the end results for each method are
very similar, although some minor differences can be seen at the lo-
cation of the red arrow. This difference can be attributed to the lack
of available particles (seed points) to extract that sub-feature. A direct
voxel comparison between these results indicates that the trajectory-
based method extracts a feature that is 98.9% similar to the feature
determined by the predictor-corrector method.

In addition, timing results on a desktop computer (using a 3.20 GHz
Intel Core i7 processor) show that the trajectory-based method took a
total of 59 ms, while the predictor-corrector method took a total of
541 ms, almost a 10x speedup. Admittedly, this comparison can be
considered slightly biased as the trajectory-based approach has access
to extra information (the particle data). However, it demonstrates the
value of our approach in being able to greatly reduce the amount of
computation that is generally required to track features. Also, note
that the speedup will be heavily dependent on the number of timesteps
that are skipped.



Fig. 13. An image of satellite detections showing a sparse coverage
over a twelve hour time window. Gray areas represent gaps in the data.
Volcanic ash detections can be seen in blue.

Fig. 14. An image of the particle data drawn as trajectories. The color
corresponds to temperature.

4.2 Atmospheric Dataset

The atmospheric dataset represents a 2D global coverage of volcanic
ash detections using infrared sensing. Unlike the combustion dataset,
the atmospheric dataset is extremely temporally and spatially sparse.
This sparseness is inherent in the acquisition method used to collect
the data because a satellite can only take measurements from one lo-
cation at one point in time. Moreover, the location of each detection is
limited by the orbital path of the satellite. An image of such satellite
detections can be seen in Figure 13. Gray areas in the image rep-
resent gaps in the data where no measurements were taken. Datasets
like these make feature tracking extremely difficult (and in many cases
impossible) using traditional techniques since features can disappear
entirely when traversing these missing regions. Our trajectory-based
approach overcomes this difficulty by utilizing corresponding particle
data to track features. In this case, we can utilize particle trajectories
from a corresponding atmospheric simulation to identify the evolution
of our features of interest. The particle data also records additional
information, such as the temperature and pressure at that particular
location. An example of the corresponding particle data can be seen
in Figure 14. Just like with the combustion dataset, the satellite detec-
tions are sparser than the particle data with approximately one timestep
of image data for every twelve timesteps of particle data.

In this example, we track an ash cloud produced by the Puyehue-
Cordón Caulle Volcano Complex in Chile, which erupted in June
2011. We identify and extract a feature of interest located near the
eruption site and track its evolution for four consecutive days using
the particles extracted at the first timestep. This can be seen in Fig-
ure 15. From the images, we can see that we can track our feature of
interest (shown in blue) even though it traverses several patches where
no data is available (shown in gray). This particular ash cloud travels
east over the South Atlantic Ocean and begins to dissipate just before
reaching the coast of Africa. Its trajectory can be seen in the top right
portion of the figure.

We can also use the additional data from the simulation to estimate

the internal properties of our feature. In this example, we track the
temperature and pressure of our feature of interest over the four day
period by averaging the values of each of the corresponding particles.
The results can be seen in Figure 16. We can see that the temperature
of the ash cloud remains relatively constant over time, which indicates
that the ash has likely already cooled from the initial eruption event.
The pressure however, tends to decrease over our time frame as the
ash cloud diffuses into the atmosphere and dissipates. This is a useful
example of how this feature tracking approach can incorporate data
from different sources into a combined analytical result.

4.3 Discussion

The above results demonstrate the effectiveness of this trajectory-
based method in being able to track the evolution of features. There are
two major advantages to this approach as reflected in each of the tested
datasets. With high resolution datasets like the combustion dataset
we can achieve feature tracking at a fraction of the computation nor-
mally required. The trajectory-based approach can skip intermediate
timesteps because the tracking itself is done using the indexed parti-
cle data. This is especially useful towards big data applications where
computational resources and I/O play a major role. The trajectory-
based approach allows users identify the evolution of a feature of in-
terest while only accessing two timesteps of the data: the start and end
step of a particular time window. This drastically reduces the amount
of computation and I/O normally required. The above results show
that comparing the trajectory-based approach to a traditional feature
tracking method results in the extraction of extremely similar features,
even over a large jump in time. This approach allows users to choose
their desired balance of accuracy and performance by adjusting the
number of skipped timesteps.

With low resolution datasets like the atmospheric dataset we can not
only easily track features without a physical overlap across timesteps,
but can also track features that traverse regions with missing data. By
using the particle data for tracking, users can jump to a later timestep
after features have emerged from the missing regions and re-extract the
feature. Lastly, this trajectory based approach can be applied towards
the fusion of information from multiple data sources. In many cases,
the particle data contains additional information that is not present in
the volume data. By extracting particles that correspond to a feature of
interest, we can measure additional internal properties over time, such
as the temperature or pressure of the feature.

With these numerous advantages comes the cost of accuracy. Since
this approach uses region growing to re-extract the feature, we simply
need at least one particle present in the feature (or one per sub-feature)
in order to re-extract it. This makes the likelihood of not being able
to re-extract the feature small. However, a build-up of discrepancies
between the particle and volume data can potentially trigger false pos-
itives in which stray particles wander into neighboring features. We
mitigate this using the discrepancy metric as described in Section 3.3.
In addition, users can choose to keep the discrepancy low by contin-
ually re-extracting particles every few timesteps rather than using the
initial set of extracted particles for all subsequent tracking. Figure 17
shows a graph of the computed discrepancy value for an example fea-
ture in the combustion dataset. The points in blue show the case where
particles are only identified at timestep 0 and then used to re-extract
the feature at all subsequent timesteps. The points in green show the
case where particles are re-identified every 25 timesteps in order to
“re-synchronize” the particles to our newly identified feature. In other
words, we discard any particles that have wandered outside of the fea-
ture and include any particles that have wandered into the feature in
any subsequent tracking. We can see that the discrepancy value re-
mains low in this case.

Note that the computed discrepancy does not directly reflect the er-
ror of the resulting feature. Instead it is a measure of the possibility
of false positives. In the case where splitting occurs, we utilize this
value to reduce the possibility of falsely extracting sub-features as de-
scribed in Section 3.3. Even if the discrepancy value is high (e.g. 0.4
after a jump of 150 timesteps as seen in Figure 17), we still can extract
features that are very similar to those extracted by traditional feature



Fig. 15. Tracking an ash cloud from a Chilean volcano over the course of four days. The feature travels east over the South Atlantic Ocean and
begins to dissipate just before reaching the coast of Africa. Its trajectory can be seen at the top-right.

Fig. 16. A graph showing the average temperature and pressure of the
ash cloud depicted in Figure 15.

tracking methods. In the example shown in Figure 12, the extracted
feature is 98.9% similar to the feature identified by the traditional ap-
proach even though the discrepancy value is above 0.5. While keeping
the discrepancy low by continually re-identifying particles might lead
to more accurate results, in many cases this is not necessary.

The disadvantage of this method mainly lies in the limitation of
applicable dataset types. The dataset must have some form of corre-
sponding particle (trajectory) data, and the movement of the features
we wish to track must be governed in a way similar to that of the parti-
cles (i.e., advection by a flow). While these two criteria are often met
in many scientific endeavors, this may not always be the case, requir-
ing the use of traditional feature tracking approaches. However, it is
important to note that if vector flow field data is present, we can choose
to implement our own advection scheme to generate artificial trajec-
tories. These trajectories can then be used as input into our feature
tracking approach exactly as described in this paper.

5 CONCLUSION AND FUTURE WORK

This work presents a new trajectory-based feature tracking approach
which uses corresponding particle data to track volumetric features.
By determining a correspondence between features and sets of parti-
cles, this approach can utilize indexed particle data to jump to later
timesteps and re-identify features of interest. Eliminating the need
to track features through intermediate timesteps is extremely advanta-
geous. First, this drastically reduces the amount of computation and

Fig. 17. A graph showing the discrepancy value of an example feature in
the combustion dataset. Blue: particles are initially identified at timestep
0 and used to extract the feature at all subsequent timesteps. Green:
particles are re-identified every 25 timesteps to keep the discrepancy
value low.

I/O time required for feature tracking, which plays a major role when
analyzing large datasets. Second, this allows our approach to be able
to track features in datasets which are both spatially and temporally
sparse. Moreover, since the tracking itself is done using the particle
data, this method can also track features across regions where volume
data may be missing. Our technique also compares favorably with tra-
ditional feature tracking methods in terms of accuracy. Results show
that we can often extract features that are similar to those obtained by
traditional methods, and at a fraction of the computation cost. Our
methods provide the groundwork for accurate and more efficient fea-
ture tracking in a wide variety of datasets containing both particle and
volume data.

In the future, we plan to extend this technique to be able to interpo-
late features between consecutive timesteps or within missing regions
by using the higher resolution particle data. This can be achieved by
using the characteristics of the particle based point-cloud to estimate
the size, shape, and location of the feature in these unknown regions.
In addition, we plan to integrate this tracking approach with trajectory
clustering techniques. By clustering the trajectories of corresponding
particles, we can also easily cluster the individual features into groups
based on the similarity of their evolution throughout the dataset. This
can also be extended to allow users to query features based on specific



trajectories.
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